Designers Concept Statement

Introduction

Over the past few weeks, we had begun a new project which was eventually our last summative assignment. In this project, we were tasked to plan, create, communicate, and reflect on our final product, a scaled-down set design based off of an existing phobia. As a starting point for this project, I decided to base my stage design off of Oneirophobia and Nostaphobia, (More info about both below) with these two phobias, I began collecting photos related to both topics to create a mood board which was later used as inspiration for my design. After developing ideas and inspiration for my project, I began the process of planning and creating concept sketches of my own stage set. Once my drafts were drawn and my final sketch was finalized, I began collecting materials as well as considering what texture I was going for in my design. From there, I began assembling my stage set according to the finalized sketch to produce my 3D set design.

Nostophobia: Nostophobia is repugnance or dislike of the past

Oneirophobia: Oneirophobia is a fear of nightmares.

Part A and Part B

When house lights are switched on you will be able to see most of the props and layers on the stage, the audience is situated in a cozy warehouse barn with panels floating around (RED ARROWS AND WORDS ARE NOT SUPPOSED TO BE VISIBLE). Even though the lighting is not visible on my stage set when house lights are on, the doorway at upstage center would have been illuminated with yellow warm light shining on the top of a black screen. The 3 doorways on upstage center to center to downstage center slowly increase in size giving the perspective that the doorway at upstage center is far away.

When house lights are switched off we can see words and arrows appear on the panels located close to the legs of the stage (I planned to use a special red glow in the dark paint to achieve this effect but couldn’t find some) to give off an odd disturbing feeling to the audience, it acts as a distraction where the audience begins to wonder and notice that the words and arrows foreshadow what will possibly happen next. (it’s like the inner thoughts of the character) The panels are also there to replicate the character entering the surreal world on the other side of the odd doorway which it seems to show a grass hill with a perfectly blue sky. The grass hill in the background is the focal point of the stage, it looks perfectly natural to the point it’s disturbing (suggested by the dark surroundings, bold red words, and arrows isolating the door). In my design, I tried to express the feeling of nostalgia by creating a portal to an illuminated grass hill (I used my phone for the light source), but instead of evoking cute or comforting emotions, I decided to use the panels as a warning for the audience about the disturbing dangers of the doorway while the character on stage cannot sense it (dramatic irony).

As I had explained in my previous blog post I looked at some photos which have really inspired me in the making of this set design. The genre I’m focusing on is categorized as dream core and is defined as an aesthetic that revolves around weird imagery and objects that trigger nostalgia. You can see from the bright doorway at upstage center was inspired by the picture with a circular portal in addition to red labels and arrows pointing at it, to express the weirdness of the atmosphere. I decided it would be a great idea to incorporate two different universes onto the stage, the grassy hill, and the warehouse with panels (Refer to 1st inspirational picture). The distinct red color used for my arrows and words in my set is special to this genre, essentially the color grabs the viewers’ attention giving them a sense of shock. (However, if I could have used a red glow paint it would have been better)

As you can see from the pictures below, I had tested with lighting as well, I went with a few lighting choices, angled lighting, front spotlight, and back spotlight. For my front spotlight idea, I used a warm-toned light (flashlight from iPad and tape + sharpies to make the film) and adjusted it to the position where it casts a shadow for the first doorway to dramatize the height of the doorway making it look tall and large to the audience. For my angled lighting idea, I tested by adjusting the angle light would shoot from right to left, or left to right shining light through some sections of the hanging panels revealing some of the arrows and words. Finally, I also tested my back spotlight idea where I paced the spotlight at upstage center to help isolate the last doorway on my set design. (It would be great for a scene where the character on stage stares at the mysterious doorway)

Overall, I am pretty proud of my product in which I had included the basic elements of a stage set even when the pandemic limited the materials I had access to. In my opinion, I feel like I successfully designed my set based off of my chosen phobia by using the distinctive red color and light to deliver a sense of disturbing nostalgia to the audience.

Picture 1 (Houselights off) (Front elevation):

close up:

Picture 2 (Houselights on) (Birds eye):

Picture 3 (Houselights on)(Angled side view):

Picture 4 (Houselights on) (Front Elevation):

Picture 5 (Houselights off) (Lighting 2 Downstage center):

Picture 6: (Houselights off) (Lighting 3 Sidelight):

Downstage left:

Downstage right:

 

Inspirational Photos:

Photo used for final model:

 

Translating the Mood Boards into SPACE Final Design

Essentially this design is a combination of both the two rough designs. The wording framing acts as a cabin or a house making it more obvious to the audience that the bedroom in the back is situated in the room. The reason why the two roof panels do not meet is that it allows panels hanging to be placed easily and to be easily seen.

Abstract the Arts of Design, Es Devlin Scenic Design

Inquiry

Because her practices were found by many artists, her practices mostly align with the artists Ideas. Her collaborators give her ideas on how to design the stage

Ingredients

Ingredient 1: Space

Ingredient 2: Light

Ingredient 3: Darkness

Ingredient 4: Scale

Ingredient 5: Time

Space: Utilising stage space, thinking out of the box to impress the audience (Not only using the stage as a platform), filling up the whole stage space.

Communicating

In the “Watch The Throne” tour, Es placed Kanye and Jay-Z on a high block elevating them above the audience, because Throne meant being on top and fighting to stay on top, she uses the tall blocks to place them high but one misstep would cause one of them to fall representing the vulnerability.

Scenic Painting Pt2

 

 

During the process of scenic painting, there are 5 steps to complete. Scumbling is requires the facing to be covered with a variety of paints with similar colour tones, it acts as the base colour . After the Scumbling process lining is required, lining creates the brick shape on the facing. Highlights and shadows are then added to enhance each brick’s 3D structure, texturing is an additional step to make bricks look 3 dimensional. To finish off the scenic painting process, spattering is added to create the extra texture of each brick.

 

Theatre Tour Experiences

This is a picture of the dimmer at the ES theatre. I chose this picture because I realized that not only does the booth control the lights but this machine helps control the brightness of the lights, so I found it pretty interesting getting to see and learn about this machine.

/

This is a picture of the booth in the MS/HS theatre, this booth is not an open house and is enclosed. I chose this picture because I finally had the chance to see where most of the light and sound are being controlled from. This space acts as the main control room of the theatre where most of the time directors stay in the booth when the show is running.

This picture captures the top view of the layers of curtains in the theatre. I chose this picture because after the tour I had a better understanding of how tall the theatre actually was. After touring, this space gave me a better idea of how the curtains were layered as it is important to know how to work with the curtains.

This is the cyclorama in the ES theatre. Although the cyclorama in this theatre is much smaller than the theatre in the MS/HS theatre, I found out that not only is the size of the cyclorama incredibly large but it is quite heavy (same with the curtains). In theatre, a cyclorama is a background that covers the back, cyc lights can evenly wash the cyclorama or create the illusion of sky, open space, or great distance at the rear of the stage setting.

G9 Engineering Project R & S

Final thoughts:

In this engineering project, we were tasked to engineer a device that shows our understanding of energy transfer (Chemical energy to electrical energy). Throughout this project, there have been many materials I’ve never encountered and used before which I’ve had the chance to learn how to use them. Before confirming the final idea, I thought we would run into many challenges and thought that making a heart rate monitor was not possible in such a short amount of time. However, instead of abandoning this idea George and I decided to challenge ourselves by working with materials we had little knowledge about. (Arduino UNO, OLED Screen, Pulse monitor) After the successful testing of our heart tracking device, we could have made many ideas and changes to this device. For example, if we were provided with more time, we could have done more research on improving the accuracy of the bpm tracker as it was not really accurate at some times. For design and presentation purposes, I felt like we should have had a larger OLED screen because the screen was small, making it a bit hard to see the information projected. In conclusion, this project was a challenge for both of us, but at the same time, a successful one.

G9 Engineering Project C & I

Progress Tracking:

Box (Wiring):

Prototype Box:

Prototype (Light testing/without heart rate monitor):

Final product test:

Box (Wiring and Arduino (interior)):

Materials Used:

  • Arduino Uno
  • Jumpwires
  • OLED Screen
  • Pulse sensor
  • Wood
  • Cardboard
  • Computer

Planning:

Week 1:

On the first day of forming our group, George and I began researching some products and issues that already existed in real life in order to narrow down our ideas to one. I mainly focused on health-related products such as smart bands, sweat monitors, footstep trackers, etc.

Week 2:

When the idea research stage was complete we finalized our idea and decided to make a heart rate sensor. Because the monitor required us to code and use the Arduino it made it a challenge to complete the device due to the lack of knowledge we had on how the Arduino works. But eventually while researching some guides on how the Arduino works and how the device is built, we had a better understanding of how to use an Arduino.

Building:

Prototype:

During the making of our prototype device, we began our research to improve our understanding of how the Arduino UNO works. During this process, we had to consider which materials were required for the prototype and what function each material had. Because our materials had not yet arrived, we began making the prototype heart rate monitor using an LED light. We began assembling the prototype setting up the LED light but left the OLED screen and pulse monitor out (materials not arrived). It took us about 2 class periods to fully understand how to assemble and code for making the prototype. After the device was finished we built a cardboard prototype model of the box beforehand giving us a rough idea of what the final laser cut box would look like.

Final Product:

When the pulse sensor and the OLED screen had arrived we began assembling the heart rate monitor following the circuit diagram:

(Removing the buzzer)

Once the device was all linked up to the Arduino we began downloading the package required for the pulse sensor and the OLED screen on the Arduino app. Since the code for the device was provided online we uploaded the code to the Arduino and began testing. Surprisingly the device worked on the first try, although it wasn’t too accurate (uses light to track blood pulses). After a few trial runs with our peers, most of the time the device was accurately tracking the resting heart rate (60-105 bpm).

G9 Engineering Project D&I

1. What problems or needs could be addressed in this product?

Health and Wellbeing

2. What examples of solutions to similar problems already exist that we can learn from?

  • With the covid pandemic still unstable, checking body temperature is crucial. Fever is one of your body’s first reactions to infection and is common in illnesses like influenza and COVID-19, so thermometers can do the job to report body temperature levels
  • For people who take heart medications, recording pulse rate and reporting it back to a doctor can help them learn whether your treatment is working. So a heart rate monitor is best to track heartbeat.
  • Good wellbeing is fundamental to our overall health, it affects how well we can overcome difficulties and achieve what we want to in life. Wellness devices or meditation devices help people train their brains toward mental focus and a calm mind by allowing the user to play brain games and relax with guided meditations.

3. What market is targeted? (who needs this kind of product?)

  • People who require heart rate monitors to track heart rate either for medical or athletic reasons. I could create a heart rate watch or a portable pulse checker just to track heart rate so the user can clearly see their heart rate anytime.
  • People who require wellness treatment. My device could entertain the user, it could be related to wellbeing activities (ex. breathing exercises)
  • My device not only could be related to human health but how the environment affects human health (ex. water purification device, using food waste and turning it into energy)

4. Problems or limitations of the project

  • limited time of 2 weeks to complete project
  • limited knowledge on how some materials work (Arduino, breadboard, jump wires)
  • limited resources (may need to order materials outside of school)
  • If a 3D printer is needed it may take a long time to print pieces
  • creating 20 divergent ideas
  • Understanding what energy is being transferred

5. Prescendents:

Sweat Sensor:

Wearable sweat sensors combine the benefits of noninvasive sweat collection with wearable real-time measurement to create a powerful platform for monitoring a variety of biochemical components of sweat that are linked to physiological circumstances. By tracking how fast the sweat moves through the microfluidic, the sensors can report how much a person is sweating or their sweat rate.

Pros:

  • useful for medical use
  • handy, portable and does not require any heavy gear
  • It relies on Bluetooth connection so wires will not be needed
  • reports sweat information from a device with a screen making it easy for the user to see the current sweat status easily

Cons:

  • may have trouble connecting to Bluetooth
  • might be hard to make this type of device in under 2 weeks time
  • lack of materials at ISB

Heart Rate Monitor:

 

The electrical signals from your heart are measured by heart rate monitors. They’re sent to a data center or a wristwatch. Many models allow you to examine data on a computer, which allows you to evaluate your workout and better comprehend the benefits of your training. It also can be used for medical purposes, where heart rate patterns may be useful for doctors to check if the person’s body is healthy.

Pros:

  • handy, portable and does not require any heavy gear
  • useful for exercising or checking heart rate patterns
  • easy to transfer data onto the computer
  • many people already use this kind of device

Cons:

  • Heart rate monitors may not be accurate
  • the technology required may be hard to find
  • Lack of materials

 

Stress/Emotion Tracker:

A stress tracker is a device that keeps track of physiological stress indicators. The majority of these devices are designed to monitor your heart. They track your heart rate and provide feedback using heart rate monitors. Other methods of measuring heart rate activities have recently been developed by wearables designers.