My project was a door alarm that used the accelerometer to detect door openings. My plan originally wanted to hide the processor behind felt with holes in the felt base for lights and controls. It also had the processor on the bottom and had a width far greater than the processor. The four lights were designated to the four corners of the felt. The keycard also had a similar processor design and also had a green light on top to represent if the keycard is activated.
Due to the extreme difficulty of installing the processor upsidedown, it was altered to face up while sewed on the front. As the entire processing unit became fully visible, the built-in green LED was used instead of the sew-on LED. Additionally, the processor on the alarm was moved to the top as it seemed easier to access with the keycard. The phrase “keep out” was kept. In doing so, the additional four lights had to be moved from the four corners to four points arranged in a rectangle which circumscribed the circular processor.
One of the most important things I learned was how to decrease the amount of thread and materials needed to make an item. The amount of felt used in the original design was nearly thrice as much as the finalized product. I decreased this by compacting the battery case, LEDs, and the sewed-on words. In doing so, I also limited my conductive thread usage. I would recommend decreasing the complexity of the sewing so that it would take up less time. This is mainly to improve the quality of the code, which will make the final product more immersive. It is also beneficial to begin work on the programming before the project is to be started.